

Company name:

EIZO Corporation

Product:

LCD Monitor

FlexScan EV2781

Date:

April 7th, 2023

Author

Mitsuko Saito Regulatory Compliance and Safety EIZO Corporation 153 Shimokashiwano, Hakusan, Ishikawa 924-8566 Japan

Reviewer

Hirofumi Moriwaki Principal Engineer, Regulatory Compliance and Safety EIZO Corporation 153 Shimokashiwano, Hakusan, Ishikawa 924-8566 Japan

Abbreviation

AP: Acidification Potential EP: Eutrophication Potential

EPD: Environmental Product Declaration

GWP: Global Warming Potential LCA: Life Cycle Assessment LCI: Life Cycle Inventory analysis LCIA: Life Cycle Impact Assessment ODP: Ozone Layer Depletion Potential

PCR: Product Category Rules

POCP: Photochemical ozone creation potential

LIST OF CONTENTS

1. General

1.1. General information

This LCA study has been performed by EIZO Corporation and has been conducted according to the requirement of the below standard and PCRs.

- ISO 14040:2006 Environmental management Life cycle assessment Principles and framework
- ISO 14044:2006 Environmental management Life cycle assessment Requirements and guidelines
- EPD 004: Monitor [2013/00/201309], Product Category Rules (PCR) for Monitor

1.2. Goal of study

The goal of performing this LCA study is to publish an EPD based on ISO 14040, 14044 and ISO 14025. This is a cradle-to-grave study.

This LCA study is not comparative assertion.

1.3. Intended audiences and intended use

The intentions of this LCA study are to communicate environmentally related information with business users and consumers who are located in Japan, and to show future improvement options to internal product development and manufacturing divisions.

1.4. Functional Unit

The functional unit is defined as one unit of 27.0 - inch LCD monitor.

2. Product

2.1. Product Information

The 27.0-inch FlexScan EV2781, frameless IPS monitor with 2560 x 1440 resolution equipped with a USB Type-C terminal for improving productivity and sustainability features for lessening impact on the environment.

2.2. Application

This product is suited to general purposes like creating documents, viewing multimedia content.

2.3. Product Environmental Information

EV2781 was certified EPA ENERGY STAR Ver.8.0, TCO Certified Generation 9, EPEAT(IEEE1680.1-2018), TUV/Ergonomie, TUV/Low blue light content, TUV/Flicker Free, RoHS, WEEE and China RoHS.

2.4. Company Environmental Activities

Although global environmental standards such as TCO Certified and EPEAT are not legal regulations, we have actively participated and adapted from the beginning of the standard to improve the environmental performance of our products.

2.5. Technical data

2.5. Technic	ai uata		
LCD Panel	Туре	IPS	
(H / V, typical)	Backlight	LED	
	Size	27.0" / 68.5 cm	
	Resolution	2560 x 1440 (16:9 aspect ratio)	
	Viewable Image Size (H x V)	596.7 mm x 335.7 mm	
	Pixel Pitch	0.233 mm × 0.233 mm	
	Display Colors	16.77 million	
	Viewing Angle	178° / 178°	
	Brightness (typical)	350 cd/m2	
	Response Time (typical)	5 ms (gray-to-gray)	
Video Signals	Input Terminals	USB-C (DisplayPort Alt Mode, HDCP 1.3), DisplayPort (HDCP 1.3), HDMI (HDCP 1.4)	
	Digital Scanning Frequency (H / V)	USB-C (DisplayPort Alt Mode): 31 kHz - 89 kHz / 59 Hz - 61 Hz	
	(117 V)	DisplayPort:	
		31 kHz - 89 kHz / 59 Hz - 61 Hz HDMI:	
		31 kHz - 89 kHz / 49 Hz - 51 Hz, 59 Hz - 61 Hz	
USB	Upstream	USB 5Gbps: Type-C (DisplayPort Alt Mode, Power Delivery Source 70 W max.)	
	Downstream	USB 5Gbps: Type-A x 4	
Audio	Speakers	1 W + 1 W	
	Input Terminals	USB-C, DisplayPort , HDMI	
	Output Terminals	Headphone (Stereo mini jack)	
Power	Power Requirements	100 - 240 VAC , 50 / 60 Hz	
	Typical Power Consumption	18 W	
	Maximum Power Consumption	153 W	
	Power Save Mode	0.5 W or less	
Physical Specifications	Dimensions (Landscape, W x H x D)	611.4 mm x 368.6 - 545.2 mm x 230 mm	
	Net Weight	8.5 kg	
Environmental Requirements	Temperature	5 - 35 °C	
1.5 4 3	Humidity	20 - 80 % R.H. (no condensation)	

2.6. Material inventory

Component/Material	Weight (g)	Weight (%)	Notes
UNIT-LCD	2,930.0	32.9%	Inclusion
ASSY-STAND-UNIT	2,201.7	24.7%	Inclusion
ASSY-PCB-POWER	857.6	9.6%	Inclusion
MLD-REAR-COVER	685.5	7.7%	Inclusion
ASSY-PCB-MAIN	645.0	7.2%	Inclusion
ASSY-BASE-UNIT	458.0	5.1%	Inclusion
MLD-MID-COVER	311.5	3.5%	Inclusion
CORD-AC	229.2	2.6%	Inclusion
MTL-VESA-PLATE	105.2	1.2%	Inclusion
CABLE	85.9	1.0%	Inclusion
MTL-MT-COVER	80	0.9%	Exclusion
Plastic Moldings	78.9	0.9%	Exclusion
Manuals	59.3	0.7%	Exclusion
INSET-PL-2-AL	47.9	0.5%	Exclusion
Harnesses	32.6	0.4%	Exclusion
Printings	25.9	0.3%	Exclusion
Others	25.7	0.3%	Exclusion
Metal Materials	18.8	0.2%	Exclusion

Packaging

Component/Material	Weight (g)	Weight (%)	Notes
CARTON-27W-18	1560	42.5%	Inclusion
ASSY-PAD-27W-B-CB	860	23.4%	Inclusion
CUSHION-27W-18-T	780	21.2%	Inclusion
TOP-PAD	220	6.0%	Inclusion
MID-PAD	180	4.9%	Inclusion
SHEET	63.8	1.7%	Exclusion
BAG-PACKING	8.1	0.2%	Exclusion

2.7. Manufacturing Location

Factory name	Address	
EIZO Corporation	153 Shimokashiwano, Hakusan, Ishikawa 924-8566 Japan	
EIZO MS Corporation (Unit board)	37-9-Re Jike, Hakui, Ishikawa 925-8566 Japan	

2.8. Transportation

Path	Geographical info	Volume	Distance	
Falli	Departure	Arrival	(ton)	(km)
10t truck	Hakusan, Ishikawa	Tokyo	40.97	600
4t truck	Hakusan, Ishikawa	Tokyo	57.47	600
10t truck	Hakusan, Ishikawa	Osaka	8.93	450
4t truck	Hakusan, Ishikawa	Osaka	16.83	450
10t truck	Hakusan, Ishikawa	Nagoya	5.90	400
4t truck	Hakusan, Ishikawa	Nagoya	6.59	400
10t truck	Hakusan, Ishikawa	Fukuoka	13.72	900
4t truck	Hakusan, Ishikawa	Fukuoka	0.78	900

2.9. Use Phase

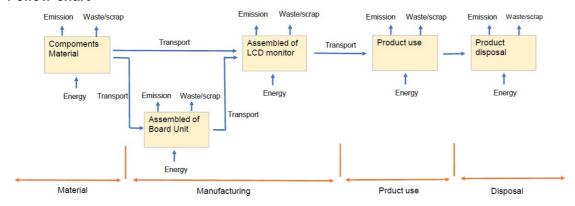
Usage time (hours/day)			Life time	Usage day	
On mode	Standby mode	Off mode	(year)	(days/year)	
9.6 (40%)	1.2 (5%)	13.2 (55%)	4	365	

Power consumption (W)			Total Power Consumption	
On mode	Standby mode	Off mode	(kWh)	
18 W	0.5 W	0 W	253.2 kWh	

2.10. Disposal Stage

Component/Material	Weight (%)	Recycle	Incineration	Landfill
Plastic	21.7%	86%	8%	6%
Iron	34.9%	86%	-	14%
Paper	28.7%	95%	5%	-
Glass	7.3%	-	-	100%
Aluminum	4.1%	86%	-	14%
Copper	1.8%	86%	-	14%
Other material	1.4%	-	-	100%
Other metal	0.2%	-	-	100%

3. LCA Study


3.1. System boundary

The system boundary includes all life cycle stages Collecting Raw materials, Manufacturing, Distribution, Use and Disposal.

Stage Prior to Manufacturing	Collecting Raw Materials	X
Stage of Manufacturing	Manufacturing	Х
Stage of Manufacturing	Distribution	Х
Stage of Use	Use	Х
Stage of Scrapping	Disposal	Х

X=included

Follow-chart

3.2. Cut-off rules

Material Inventory survey was conducted on 95 wt. % of material in each Product / Package. Disposal stage survey was conducted on 95 wt. % of material in each Product / Package.

3.3. LCA Data

For Life Cycle Assessment, SimaPro release 9 software system has been used. Ecoinvent 3 datasets have been taken from SimaPro release 9 software database.

EIZO collects

Materials: Use spec sheet values

Transport: Measured the distance on map Energy: Used electricity bill invoice value

3.4. Data quality

All foreground data were collected at Hakusan and Hakui Plant Between April 1, 2021 and March 31, 2022 (One year average data).

Background data ware used from ECOINVENT 3 database (The data version is 2020).

3.5. Allocation

The electric power used in the factory for manufacturing an EV2781 was calculated by allocating EV2781 weight from the total weight of the monitor produced in one year (monitor mass x number of production) of this factory.

The electric power used in the PCB board factory for manufacturing an EV2781 PCB board was allocated from the production ratio of small, medium, and large monitors for one year and its representative mass of the PCB board.

3.6. Assumption and Limitation

Assumption

The on-mode power consumption when using this monitor was used the power consumption value of EIZO's Typical Power Consumption specifications.

For transportation, we picked up four major cities, Tokyo, Osaka, Nagoya and Fukuoka. Glass and other materials/metals were assumed to be 100% landfilled.

Limitation

The study results are limited to a specific use scenario and real-world use of the monitor may significantly change the result

Materials are represented by industry average data, not primary supplier data. To the extent that material/components suppliers may not be average, the results might significantly change.

4. LCA Results

4.1. LCIA methodology

LCIA was calculated by using CML is developed by the Institute of Environmental Sciences Leiden University, the Netherlands.

https://www.universiteitleiden.nl/en/science/environmental-sciences/tools-and-data#CML IA

LCIA results are relative expressions and do not predict impacts on category endpoints, the exceeding of the thresholds, safety margins or risks.

Impact category	Unit	Model
Global warming potential (GWP 100)	kg-CO₂eq	IPCC
Ozone depletion potential (ODP)	kg-CFC-11eq	WMO
Eutrophication potential (EP)	kgPO ₄ ³-eq	Heijungs et al.
Acidification potential (AP)	kg-SO₂eq	Hauschild and Wenzel
Photochemical oxidant creation potential (POCP)	kg-C ₂ H ₄ eq	Jenkin and Hayman
Abiotic depletion potential (ADP)	Kg-Sbeq	Guinee et al.

4.2. Life cycle Environmental Impact Assessment Result

Impact Category	Units	Total	Raw Material	Manufact uring	Transport ation	Use	Disposal
GWP	kg-CO₂eq	4.26.E+02	2.62.E+02	2.90.E+00	2.83.E+00	1.57.E+02	1.65.E+00
ODP	kg-CFC-11eq	2.15.E-05	1.79.E-05	5.06.E-08	4.19.E-07	3.04.E-06	6.02.E-08
EP	kgPO₄³-eq	1.47.E+00	1.31.E+00	2.70.E-03	1.62.E-03	1.56.E-01	1.02.E-03
AP	kg-SO₂eq	3.50.E+00	2.75.E+00	1.29.E-02	7.35.E-03	7.24.E-01	1.69.E-03
POCP	kg-C₂H₄eq	1.50.E-01	1.19.E-01	5.35.E-04	3.64.E-04	3.00.E-02	7.08.E-05
ADP	Kg-Sbeq	3.23.E+00	2.06.E+00	2.09.E-02	2.02.E-02	1.13.E+00	3.04.E-03

5. Interpretation

5.1. Completeness

Since we have made a 5% cut-off, the raw material should be an additional 5%. In the GWP impact index, Row material accounts for 61.5 % of total emissions. Therefore, the total impact will increase by 3.1 %

The materials within 5% are small parts, sheets and labels made of general plastics, and copper harnesses, paper prints, metal, screws, etc.

They do not include anything that has a major impact on the environment.

Raw material's impact of GWP	CO2 increased amount by additional 5% Raw material	Impact to GWP by additional 5% Raw material
61.5 %	13.1 kg	3.1 %

5.2. Sensitivity

When the brightness of On-mode, which may vary as data, is maximized, it will increase by 17 W in actual measurement.

When On-mode increases by 16 W, Total Power Consumption increases from 253.2 kWh to 501.1 kWh. This corresponds to an increase of 153.4 kg in CO2 emissions. In the GWP impact, Total Power Consumption (use phase) accounts for 36.8 % of the total, so the total GWP impact increases by 36.0 %.

Use phase impact of GWP	CO2 emissions increased by maximizing on-mode brightness	Impact to GWP by increase maximizing on-mode brightness
36.8 %	153.4 kg	36.0 %

5.3. Consistency

The impact index of the LCD panel accounts for 71.7 % of the raw material, and 44.1 % of the total life cycle impact index. If the impact index of the LCD panel increases by 10% due to errors, the total impact will increase by 4.0 %. This corresponds to an increase of 18.8 kg in CO2 emissions.

UNIT-LCD impact of GWP	CO2 increased amount by increase UNIT-LCD impact	Impact to GWP by increase UNIT-LCD impact
44.1 %	18.8 kg	4.4 %

5.4. Representativeness

The materials and processes of this product are very common. So, most of selected data represents this model well. However, there are several kinds of cables/connectors in this product and we used only the below three data. These cables/connectors consist of 2.5% total product weight. This might have some small variances.

- Cable, three-conductor cable
- Electric connector, wire clamp

There is a stand-free version as another form of EV2781. In the case of the version without stand, the impact index for the no stand is reduced.

From the GWP impact, CO2 emissions from the stand are 3.3 % of the raw material, which is 8.8 kg. The total impact without a stand is only decrease of 2.1 %, and it can be considered that the standard product with stand can be regarded as representative data.

ASSY-STAND and ASSY- BASE-UNIT impact of the raw material	CO2 decreased amount by no stand impact	Impact to GWP by decrease stand
3.3 %	-8.8 kg	-2.1 %

5.5. Conclusion

It was found that the ratio of the power consumption by the user to the global warming potential (GWP) is as large as 36.8 %. The power consumption of the display by the user greatly changes depending on the actual daily usage and the brightness setting of the display. We realized again that the need to reduce power when using the display.

5.6. Recommendation

Since the global warming potential (GWP) can be reduced by reducing the power consumption of the user, it is necessary to appropriately control the brightness when using the display, which greatly affects the power, or to reduce the power consumption of the display itself.

6. References

- · ISO 14025/DIN EN /ISO 14025:201110: Environmental labels and declarations Type III environmental declarations Principles and procedures
- · ISO 14040: 2006 Environmental management Life cycle assessment Principles and framework
- ISO 14044:2006 Environmental management Life cycle assessment Requirements and guidelines
- EPD 004: Monitor [2013/00/201309], Product Category Rules (PCR) for Monitor
- · SimaPro 9.0 / Ecoinvent 3:
- · CML 2001 (all impact categories) V2.05 / the Netherlands, 1997